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Quasinormal-mode description of waves in one-dimensional photonic crystals
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Quasinormal-mode treatment is extended to the description of scalar field behavior in one-dimensional
photonic crystals. A one-dimensional photonic crystal is a particular configuration of an open cavity, where
discontinuities of the refractive index give rise to field confinement. This paper presents, for a one-dimensional
photonic crystal, a discussion about the completeness of the quasinormal-mode representation and, moreover,
a discussion on the complex eigenfrequencies, as well as the corresponding field distribution. The concept of
density of modes is also discussed in terms of quasinormal modes.
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I. INTRODUCTION

The definition of natural modes of confined structures
one of the central problems in physics@1,2#, such as in
nuclear physics, astrophysics, etc. The main problem is
to the boundary conditions, when they are such to push
the problem from the class of Sturm-Liouville problem
This occurs when boundary conditions imply the presenc
eigenvalues, as for example when a scatterer excited f
the outside@3# gives rise to a transmitted and reflected fie

An open cavity with external or internal excitation repr
sents a ‘‘noncanonical’’ problem, in the sense of a Stur
Liouville problem, due to the fact that the cavity mod
couple themselves with the external modes. This problem
crucial when we intend to study light matter interaction
fects, such as absorption, spontaneous emission, and s
lated emission, as they occur in microcavities.

The problem of the field description inside an open cav
has been discussed by several authors@4–6#. In particular,
Leung et al. introduced description of the electromagne
field in a one sided open optical cavity in terms of ‘‘qua
normal modes’’ or QNMs@7–10#. Because of the ‘‘leakage,’
or coupling between cavity modes and the continuum,
modes of the cavity are referred to as quasinormal modes
are characterized by complex frequencies. In Refs.@7–10#,
QNMs are discussed in a one-dimensional leaky cavity, p
vided the cavity is defined by a discontinuity in the refracti
index which must approach its constant asymptotic va
sufficiently rapidly.

In what follows, we extend the QNM treatment to on
dimensional photonic band gap structures. The past two
cades have witnessed an intense investigation on electro
netic propagation phenomena at optical frequencies
periodic structures, usually referred to as one-dimensio
~1D! photonic band gap~1D-PBG! structures or 1D photonic
crystals~1D PC! @11#. The essential properties of these stru
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tures are the existence of allowed and forbidden freque
bands and gaps, in analogy with energy bands and gap
semiconductors. Dispersive properties are usually evalu
assuming an infinite periodic structure@12#. The finite di-
mensions of PCs conceptually modify the calculation and
nature of the dispersive properties: this is mainly due to
existence of an energy flow into and out of the crystal.
phenomenological approach to the dispersive propertie
1D PBG has been presented in Ref.@13#. Application of the
effective-medium approach to a 1D PBG is discussed,
the analogy of a 1D PBG to a simple Fabry-Perot structur
developed by Sipe, Poladian, and Martijn de Sterke in R
@14#.

Finite length photonic band gap structures manifest all
aspects related to a class of problems which do not belon
the Sturm-Liouville class: in fact, they behave as scatte
objects when they are excited from outside and as open c
ties when excited from the inside.

In this work, we extend the QNM theory to 1D PBG a
cavities open from both sides. The validity of the method
proved by reconstructing the field behavior inside the
PBG and by recovering the behavior of the density of mod

The paper is organized as follows. In Sec. II, we discu
the completeness of the QNM representation for 1D-P
structures. In Sec. III, we discuss QNM frequencies a
functions. Finally, in Sec. IV we discuss the problem of t
density of QNMs.

II. COMPLETENESS OF QNM REPRESENTATION FOR
1D-PBG STRUCTURES

Now, as depicted in Fig. 1~a!, let us consider a 1D PBG a
a cavity open at both ends, with refractive index that is co
tinuous in some intervals

n~x!5H n0~x! for x,x0

nj~x! for xj 21,x,xj , where j P@1,N#

nN11~x! for x.xN

.

~2.1!
©2003 The American Physical Society14-1
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FIG. 1. ~a! Typical behavior of the refractive
indexn(x) in a 1D PBG. Indexn(x) is generally
continuous with N discontinuities and it is
asymptotic for large distance.~b! Refractive in-
dex n(x) for a symmetric 1D PBG.
a
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Outside the 1D-PBG structure there is a medium with
asymptotic refractive index

lim
x→2`

n0~x!5 lim
x→`

nN11~x!5n0 . ~2.2!

According to the method proposed in Refs.@8–10#, we use
the Green function formalism@15#. The Fourier transform
G̃(x,y;v) of the Green function satisfies the following equ
tion:

F ]2

]x2 1v2r~x!GG̃~x,y;v!52d~x2y! ~2.3!

with

r~x!5S n~x!

c D 2

. ~2.4!

G̃(x,y;v) is analytic when Im(v).0 and its behavior is of
the type exp(6in0vx/c) for x→6`. Two auxiliary functions
g6(x,v) are introduced, and solution of the homogeneo
equation

F ]2

]x2 1v2r~x!Gg6~x,v!50, ~2.5!

with the asymptotic conditions

g1~x,v!5ein0~v/c!x for x→1`, ~2.6!

g2~x,v!5e2 in0~v/c!x for x→2`. ~2.7!

The Wronskian associated to the two homogeneous e
tions for g6(x,v) is x independent@9#

W~v!5g1~x,v!g28 ~x,v!2g2~x,v!g18 ~x,v!. ~2.8!

It can be shown that
02661
n

s

a-

G̃~x,y;v!5H 2
g2~x,v!g1~y,v!

W~v!
for 0,x,y

2
g1~x,v!g2~y,v!

W~v!
for 0,y,x.

~2.9!

The QNMs correspond to all the poles of functio
G̃(x,y;v); they represent couples of values@vn , f n(x)#; if a
complex frequency is chosen so as to correspond to a Q
frequencyv5vn , it follows that @9#

W~vn!50, ~2.10!

the auxiliary functionsg6(x,vn) are not linearly indepen-
dent

f n~x!5g1~x,vn!5c~vn!g2~x,vn!, ~2.11!

where c(vn) is an appropriate constant of proportionalit
and satisfy the asymptotic conditions

f n~x!5exp~6 in0vnx/c! for x→6`. ~2.12!

The QNM treatment presents formal analogies with the tre
ment of Hermitian systems@8#. The most conspicuous simi
larity is the form of the solutions of wave equation, given
En(x,t)5 f n(x)e2 ivni . Frequenciesvn become complex,
with Im(vn),0, and it is evident that the modesEn(x,t) are
not stationary.

It is possible to extend the concept of norm@9# for a
cavity open at both ends, of lengthL, from x50 to x5L,
i.e.,
4-2
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QUASINORMAL-MODE DESCRIPTION OF WAVES IN . . . PHYSICAL REVIEW E68, 026614 ~2003!
^ f nu f n&52vnE
0

L

r~x! f n
2~x!dx1 iAr0@ f n

2~0!1 f n
2~L !#.

~2.13!

Several remarks about this generalized norm are in orde
involves f n

2(x) rather thanu f n(x)u2 and it is in general com-
plex; it involves two ‘‘surface terms’’ iAr0f n

2(0) and
iAr0f n

2(L).
The representation of quasinormal modes is comp

only inside the cavity@9#. We prove in what follows that
inside a 1D-PBG structure, the condition for QNM comple
ness is valid, i.e., the behavior ofG̃(x,y;v) for large uvu is
~see Ref.@9#!

lim
uvu→`

G̃~x,y;v!50, ; v/Im~v!,0. ~2.14!

The proof of QNM completeness is based on the applica
of the WKB method extended to optical regime. The WK
method, proposed to solve the Schro¨dinger equation~applied
to \ parameter, considering\→0), here is applied in optics
and for thel parameter~consideringl→0, see Appendix A!
@9#. We note that for a 1D PBG with refractive index~2.1!,
depicted in Fig. 1, we cannot solve exactly Eq.~2.5! with the
asymptotic conditions~2.6! and~2.7!; however, we can use
WKB-like method@7# in every period of the 1D PBG, if we
suppose thatl is so small to verify

Udnj~x!

dx U! 4p

l
for xj 21,x,xj , where j P@1,N#,

~2.15!

wherel is the wavelength of the electromagnetic field.
For a 1D-PBG structure, whose refractive index is giv

by Eq. ~2.1!, we obtain the following expressions for th
auxiliary functiong2(x,v):

g2~x,v!5Aj~v!expF i
v

c E
x

xj
n~j!djG1Bj~v!

3expF2 i
v

c E
x

xj
n~j!djG , xj 21,x,xj

g2~x,v!5expF2 i
v

c E
x

x0
n~j!djG , x,x0 , ~2.16!

where j P@1,N11# andxN1151`. For the auxiliary func-
tion g1(x,v), we have
02661
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g1~x,v!5Cj~v!expF i
v

c E
xj 21

x

n~j!djG1D j~v!

3expF2 i
v

c E
xj 21

x

n~j!djG , xj 21,x,xj

g1~x,v!5expF i
v

c E
xN

x

n~j!djG , x.xN , ~2.17!

where j P@0,N# andx2152`.
Under the conditions of continuity for the auxiliary func

tions g6(x,v) and their derivatives inx5xj , we obtain

S Aj 11

Bj 11
D5Sj S Aje

2 iq j1RjBje
2 iq j

RjAje
iq j1Bje

iq j D , ~2.18!

S Cj

D j
D5Sj8S Cj 11e2 iq j 212RjD j 11e2 iq j 21

2RjCj 11eiq j 211D j 11eiq j 21 D , ~2.19!

where

q j5
v

c E
xj

xj 21
n~x!dx,

Rj5
@n~xj

1!2n~xj
2!#

@n~xj
1!1n~xj

2!#
,

Sj5
@n~xj

1!1n~xj
2!#

2n~xj
1!

,

Sj85
@n~xj

1!1n~xj
2!#

2n~xj
2!

. ~2.20!

Now, only inside the 1D PBG, i.e.,; (x,y)ux0,y<x,xN ,
we can assure that' j ux0,y<xj , xj 21<x,xN , so we have
for j <m<N and 1<n< j ,

g2~y,v!5An~v!expF i
v

c E
y

xn
n~j!djG1Bn~v!

3expF2 i
v

c E
y

xn
n~j!djG ~2.21!

g1~x,v!5Cm~v!expF i
v

c E
xm21

x

n~j!djG1Dm~v!

3expF2 i
v

c E
xm21

x

n~j!djG . ~2.22!

Then, the Fourier transform of the Green function fory<x
has the following expression:
4-3



˜
FAn~v!expF i

v

c
*y

xnn~j!djG1Bn~v!expF2 i
v

c
*y

xnn~j!djG GFCm~v!expF i
v

c
*xm21

x n~j!djG1Dm~v!expF2 i
v

c
*xm21

x n~j!djG G
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G~x,y;v!52

2i
v

c
n~x!FDm~v!Bn~v!expF2 i

v

c
*xm21

xn n~j!djG2Cm~v!An~v!expF i
v

c
*xm21

xn n~j!djG G .

~2.23!
.
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CoefficientsAn , Bn , Cm , and Dm are obtained from Eqs
~2.18! and ~2.19! after some algebra

S An

Bn
D5 )

j 50

n21 S Aj

Bj
D> )

j 50

n21

SjS Rn expS i (
j 50

n22

q j2qn21D
expS i (

j 50

n21

q j D D ,

~2.24!

S Cm

Dm
D5 )

j 5m

N S Cj

D j
D

> )
j 5m

N

Sj8S RNRm expS i (
j 5m

N21

q j2qm21D
2RN expS i (

j 5m21

N21

q j D D .

~2.25!

We suppose for the refractive index thatun(xj
1)2n(xj

2)u
<Dn<1, ; j P@1,N# so Rj<Dn/@n(xj

1)1n(xj
2)#

<1/@n(xj
1)1n(xj

2)#,1/2, ; j P@1,N#. We note thatRj , ;
j P@1,N#, is close to 0 than to 1; then, from Eqs.~2.24! and
~2.25!, it follows thatBn is dominant with respect toAn and
Dm is dominant with respect toCm , so Eq.~2.23! becomes

G̃~x,y,v!>2

expS 2 i
v

c F E
y

xn
n~j!dj1E

xm21

x

n~j!djG D
2i

v

c
n~x!expF2 i

v

c E
xn21

xn
n~j!djG .

~2.26!

Since fory<x we have

E
y

xn
n~j!dj1E

xm21

x

n~j!dj5E
xm21

xn
n~j!dj1E

y

x

n~j!dj

<E
xn21

xn
n~j!dj ~2.27!

and the transformed Green function in a 1D-PBG struct
has the following behavior:

G̃~x,y,v!→0 for uvu→`. ~2.28!

Therefore, the QNM completeness in 1D PBG is proved
02661
e

III. QNM FREQUENCIES AND FUNCTIONS FOR PBG
STRUCTURES

Let us now specify the previous considerations to a sy
metric 1D PBG withN periods, where a period consists
two layers with refractive indicesnk andnl , as usually con-
sidered in the literature. We divide the entirex space into
2N13 layers, in each of which the index of refractionn(x)
is constant; for a generic interval (xj 21 ,xj ), with j
50,1,...,2N11, 2N12, andx2152` and x2N115`, the
index of refraction is chosen to take the constant values

nj5H 1 for j 50, 2N12

nh for j 51,3,...,2N21, 2N11

nl for j 52,4,...,2N,

~3.1!

as schematically depicted in Fig. 1~b!.
In Appendix B, we demonstrate that if we introduce t

two phase terms

d l5ql l 5nl l
v

c
,

dh5qhh5nhh
v

c
, ~3.2!

the QNM frequencies can be found by solving the followi
transcendental equation:

a (
j 50

@~N21!/2#
~21! j

j !

~N212 j !!

~N2122 j !!
~g!N2122 j

1b (
j 50

@~N22!/2#
~21! j

j !

~N222 j !!

~N2222 j !!
~g!N2222 j50,

~3.3!

where the coefficientsa, b, andg are parameters related t
the refractive indices of each layer
4-4
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a5
1

4 H F S n11
1

n1
D12S nh1

1

nh
D2422S nh

n1
1

nl

nh
D

1S nh
2

n1
1

n1

nh
2D Ge2idh1 id l1F S n11

1

n1
D22S nh1

1

nh
D24

12S nh

n1
1

n1

nh
D1S nh

2

n1
1

n1

nh
2D Ge22idh1 id l1F2S n11

1

n1
D

22S nh
2

n1
1

n1

nh
2D Geid l1F2S n11

1

n1
D12S nh1

1

nh
D24

12S nh

n1
1

n1

nh
D2S nh

2

n1
1

n1

nh
2D Ge2idh2 id l1F2S n11

1

n1
D

22S nh1
1

nh
D2422S nh

n1
1

n1

nh
D2S nh

2

n1
1

n1

nh
2D Ge22idh2 id l

1F22S n11
1

n1
D12S nh

2

n1
1

n1

nh
2D Ge2 id lJ ,

b5H F22S nh1
1

nh
D Geidh1F21S nh1

1

nh
D Ge2 idhJ ,

g5
1

4nhn1
$~nh1n1!2ei ~dh1d l !2~nh2n1!2ei ~dh2d l !

2~nh2n1!2ei ~d l2dh!1~nh1n1!2e2 i ~dh1d l !%. ~3.4!

More details are given in Appendix B. Only for a symmetr
1D PBG with quarter-wave stacks, Eq.~3.3! can be solved
analytically; if N is the number of periods andv ref is the
reference frequency, there are exactly 2N11 QNM frequen-
cies in the@0,2v ref# range.

The QNMs distribution is not uniform in space, but pr
sents gap structures. In Fig. 2~a!, we plot QNM frequencies
for a symmetric quarter-wave 1D PBG, where the refere
wavelength isl ref51 mm, the number of periods isN54,
and the two used refractive indices arenh51.5, n151. A
simple inspection of Fig. 2~a! shows that next to the gap, th
QNM frequencies have the smallest imaginary part, a
hence have the narrowest resonance lines. In Fig. 2~b!, QNM
frequencies are shown for the same structure of Fig. 2~a!, but
with nh52, n151. Contrasting Figs. 2~a! and 2~b!, it can be
seen that as the difference between the refractive indice
adjacent layers is increased, the width of the gap increa
This also entails that the magnitude of the imaginary par
the QNM decreases, and the resonance peaks become ti
In Fig. 2~c!, QNM frequencies are shown for the same stru
ture as above, with an increased number of periodsN58 and
nh52, n151. Contrasting Figs. 2~b! and 2~c!, it can be seen
that as the number of periods is increased, the position of
gap remains the same: as in the previous case, the imag
parts of the QNMs decrease~in modulus!, and resonance
peaks become narrower.

If we study the behavior of the transmission spectrum o
symmetric quarter-wave 1D PBG, we observe that, in
base periodvP@0,2v ref#, the number of peaks is equal t
02661
e
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2N. From the QNM theory~see Appendix B!, in the range
vP@0,2v ref#, there are exactly 2N11 QNM frequencies.
One of them is located on the imaginary axis and we rejec
because it does not represent a physical field oscillation.
remaining 2N QNMs correspond to the 2N transmission
peaks. Thenth QNM frequencyvn well describes thenth
transmission peak in the sense that~1! Re(vn) corresponds to
the resonance frequency of thenth transmission peak and~2!

FIG. 2. ~a! QNM frequencies for a symmetric quarter-wave 1
PBG with reference wavelengthl ref51 mm, number of periodsN
54, and refractive indicesnh51.5,n151. ~b! QNM frequencies for
a symmetric quarter-wave 1D PBG with reference wavelengthl ref

51 mm, number of periodsN54, and refractive indicesnh52,
n151. ~c! QNM frequencies for a symmetric quarter-wave 1D PB
with reference wavelengthl ref51 mm, number of periodsN58,
and refractive indicesnh52, n151.
4-5
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uIm(vn)u is linked to the full width at half maximum of the
nth transmission peak.

It is important to point out that~see Appendix B! the
eigenfunctionsf n(z) associated to thenth QNM, of eigen-
frequencyvn , is such that its square modulusu f n(z)u2 gives
the field intensity distribution inside the PBG structure
frequency Re(vn).

We consider a symmetric~N periods plus one stack!
quarter-wave 1D-PBG structure withN510, l ref51 mm,
andnh53, n152. The low-wavelength and high-waveleng
band edges predicted by the QNM theory@Eq. ~3.3!# are
respectively 0.8688mm and 1.1779mm, those obtained by
the numerical transfer matrix methods@16–18# are respec-
tively 0.8677mm and 1.1781mm. In Fig. 3~a!, we plot the

FIG. 3. ~a! Intensity field distributionI (x) normalized to input
intensity I 0 for the QNM theory ~ ! and numerical methods
~ !, in a symmetric quarter-wave 1D PBG with referen
wavelengthl ref51 mm, number of periodsN510, and refractive
indices nh53, n152, at the low-wavelength band edgel low

50.8688mm. ~b! Intensity field distributionI (x) normalized to
input intensityI 0 , for the QNM theory~ ! and numerical meth-
ods~ !, in a symmetric quarter-wave 1D PBG with referen
wavelengthl ref51 mm, number of periodsN510, and refractive
indices nh53, n152, at the high-wavelength band edgelhigh

51.1779mm.
02661
t

field intensity distribution inside the same 1D-PBG structu
as above, at the low-wavelength band edge~0.8688 mm!,
while, in Fig. 3~b!, we refer to the high-wavelength ban
edge~1.1779mm!. We note that the field intensity distribu
tion predicted by the QNM theory~see Appendix B! a part
from negligible differences due to purely computation
problems, is very close to that obtained by numerical me
ods based on the transmission matrix@16–18#.

IV. DENSITY OF QUASINORMAL MODES

One of the most important parameters describing
spectral properties of field localization is the so called ‘‘de
sity of modes.’’ From the literature, the concept of density
modes for a closed cavity is well known, however the pro
lem of a suitable definition arises for open cavities.

We would like to remark that the density of modes
calculated assuming the presence of an excitation at the
boundary of the 1D PBG.

For 1D-PBG structures, Bendickson, Dowling, an
Scalora@18# introduced a definition of density of modes an
a method of calculation based on the transfer matrix meth
According to Ref.@18#, the density of modes of a multilaye
structures can be obtained from the phase of the com
transmission function

t~v!5x~v!1 iy~v!5ATeif, ~4.1!

wherew is the total phase accumulated as the light pro
gates through the 1D PBG, seen as a potential well of wi
L. Therefore, the effect of propagation can be encapsula
into a propagation factorkL, wherek is an ‘‘effective’’ wave
number.

The quantitydk/dv has the meaning of density of mode
~DOM!, and according to Eq.~4.1! it is given by

s~v!5
dk

dv
5

1

L

y8x2x8y

x21y2 , ~4.2!

where the prime denotes differentiation with respect tov.
Now, let us go back to the QNM formalism for ope

cavities and search for a definition and calculation of den
of quasinormal modes, to be compared with results obtai
from Eq. ~4.2!.

We deal with an open cavity, however through the co
cept of QNM we can ‘‘look’’ inside the cavity and define th
local density of quasinormal modess loc(x,v) so that the
number of QNMsdNQNM(x,v) in the infinitesimal tract of
cavity (x,x1dx) and for a range of frequency (v,v1dv) is

dNQNM~x,v!5s loc~x,v!dx dv. ~4.3!

For a cavity of lengthL and with a suitable refractive inde
n(x), the density of quasinormal mode~DOM-QNM! is

s~v!5
1

L E
0

L

n2~x!s loc~x,v!dx. ~4.4!

If we extend the method of Hoet al. @19# to a cavity open
from both sides with a pump incoming from the left, w
4-6
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obtain the local density of quasinormal modes inside
structure as a superposition of QNMs

s loc~x,v!5K
r0

p (
n,m

Fn~0!Fm~0!

~v2vn!~v1vm!
Fn~x!Fm~x!,

~4.5!

where we have introduced a normalization constantK
and the normalized QNM functions Fn(x)
5 f n(x)A2vn /^ f n , f n&.

For one resonance m52n, since (vn* , f n* )
5(2v2n , f 2n), the local density~4.5! becomes

s loc,n~x,v!5K
r0

p

uFn~0!Fm~x!u2

~v2Revn!21Im2 vn
. ~4.6!

If we integrate Eq.~4.6! over the cavity length, we obtain

sn~v!5
K

p

l nuFn~0!u2

~v2Revn!21Im2 vn
, ~4.7!

where we have introduced the normalization integralsl n

51/L*0
LFn(x)u2r(x)dx.

Now, we proceed further and obtain an expression for
DOM-QNM of a symmetric quarter-wave 1D PBG.

For narrow resonances, i.e.,uIm vnu!uRevnu, we can ne-
glect aliasing between frequencies, then the QNM-DOM
the superposition

s~v!5(
n

sn~v!5
K

p (
n

I n

uFn~0!u2

~v2Revn!21Im2 vn
.

~4.8!

As suggested in Ref.@19#, we can calculate the normalizatio
integralsI n51/LAr0/2uIm vnu@uFn(0)u21uFn(L)u2#. If the cav-
ity is symmetric, thenFn(L)5(21)nFn(0); so taking into
account thatuFn(0)u25L/Ar0I nuIm vnu, Eq. ~4.8! becomes

s~v!5
K8

p (
n

I n
2 uIm vnu
~v2Revn!21Im2 vn

, ~4.9!

whereK85KL/Ar0.
As suggested in Ref.@19#, under the previous hypothes

of uIm vnu!uRevnu, we can approximate the normalizatio
integrals toI n>1/L, and the DOM-QNM finally results

s~v!5
Ks

p (
n

uIm vnu
~v2Revn!21Im2 vn

, ~4.10!

whereKs5K8/L2.
Now, we specify, for a symmetric quarter-wave 1D PB

the DOM-QNM ~4.10!. We consider a symmetric quarte
wave 1D PBG with a number of periodsN and reference
frequencyv ref . The families of QNMs are 2N11. If we pick
the mth family, all the QNM frequencies have the sam
imaginary part Im(vm),0. For anymth family, the QNM
frequenciesvm,k are distributed with a stepD52v ref , so
Re(vm,k)5Re(vm,0)1kD, kPZ ~see Appendix B!. Then, the
DOM-QNM ~4.10! becomes
02661
e

e

s

,

s~v!5
Ks

p (
m50

2N

(
k52`

` uIm vmu
@v2~Revm,01kD!#21Im2 vm

,

~4.11!

and it is a superposition of functions with QNM frequenci
as parameters.

From above, there are 2N11 QNM frequencies in the
@0,2v ref# range, and, in conformity with above-mentione
notation, we express them asvm,05Re(vm,0)1 j Im(vm),
with mP@0,2N#. Equation~4.11! converges to

s~v!5
Ks

2D (
m50

2N

cothF j
p

D
~v2vm,0* !G

1 j
Ks

2D (
m50

2N

cotFpD ~v2vm,0!G . ~4.12!

For a symmetric quarter-wave 1D PBG with lengthL, num-
ber of periodsN and reference frequencyv ref , and the num-
ber of QNMs in units ofL is 2N11 over the range@0,2v ref#
and represents also the QNMs in the whole ran
@22v ref,2v ref#, since the QNM of frequencyvm,0 , with
Re(vm,0).0, is represented also by the frequencyv2m,0

52vm,0* , with Re(v2m,0),0 @7#. Then, the normalization
constantKs is obtained by following condition:

E
22vref

2wref
s~v!dv5

2N11

L
. ~4.13!

In Fig. 4~a!, we plot the DOM predicted by the QNM theor
@Eq. ~4.12!# and by Bendickson@Eq. ~4.2!# for a symmetric
quarter-wave 1D PBG, where the reference wavelength
l ref51 mm, the number of periods isN54 and the two used
refractive indices arenh51.5, n151. In Fig. 4~b!, the two
DOM are shown for the same structure of Fig. 4~a!, but with
nh52, n151. In Fig. 4~c!, the two DOM are shown for the
same structure as in Fig. 4~a!, with an increased number o
periodsN58 andnh52, n151. We note the good agreeme
between the DOM predicted by the QNM theory and t
DOM obtained by Bendickson.

V. CONCLUSION

We have analyzed the behavior of the electromagn
field in the optical domain, inside one-dimensional photo
crystals, by using an extension of the QNM theory. 1D-PB
structures are particularly optical cavities, with both sid
open to the external environment, with a stratified mate
inside. These PBG structures are finite in space, and w
we work with electromagnetic pulses of a spatial extens
longer than the length of the cavity, the PBG cannot be st
ied as an infinite structure, rather we have to consider
boundary conditions at the two ends of the structure.

The QNM theory, we have extended and applied, cons
ers the realistic situation in which the cavity is open~from
both sides! and is enclosed in an infinite external space. T
4-7
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FIG. 4. ~a! DOM in units of 1/v, wherev5cL/Lopt ~L is the length andLopt the optical path of the 1D PBG!, according to the QNM
theory ~ ! and Bendickson~ !, for a symmetric quarter-wave 1D PBG with reference wavelengthl ref51 mm, number of periods
N54, and refractive indicesnh51.5,n151. ~b! DOM in units of 1/v, wherev5cL/Lopt ~L is the length andLopt the optical path of the 1D
PBG!, according to the QNM theory~ ! and Bendickson~ ! for a symmetric quarter-wave 1D PBG with reference wavelen
l ref51 mm, number of periodsN54, and refractive indicesnh52, n151. ~c! DOM in units of 1/v, wherev5cL/Lopt ~L is the length and
Lopt the optical path of the 1D PBG!, according to the QNM theory~ ! and Bendickson~ !, for a symmetric quarter-wave 1D PBG
with reference wavelengthl ref51 mm, number of periodsN58, and refractive indicesnh52, n151.
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lack of energy conservation, for the system under consi
ation, gives complex, instead of real, eigenfrequencies.
evolution operator for the system, analogous of the Hamil
operator for the conservative cases, is not Hermitian fo
double open optical cavity and the modes of the field are
normal but quasinormal.

Starting with the Green function we have discussed
completeness of the field representation inside the 1D-P
structure. We have observed that the QNM frequencies
not uniformly distributed in the complex plane, but they a
range themselves in order to form permitted and forbidd
bands, in agreement with the known characteristics of th
structures@18#. Moreover, we have found that, for a symme
ric quarter-wave 1D PBG withN periods andv ref as the
reference frequency, there are exactly 2N11 QNM frequen-
cies in the@0,2v ref# range. One of them is located on th
imaginary axis and we reject it because it does not repre
a physical field oscillation, the remaining 2N QNM frequen-
02661
r-
e
n
a
ot
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cies correspond to the 2N transmission peaks in the@0,2v ref#

range. Every QNM frequency characterizes the corresp
dent transmission peak because:~a! the real part of the QNM
frequency is the resonance frequency of the transmis
peak, and the imaginary part of QNM frequency is a meas
of the broadening of the same peak;~b! the square modulus
of the QNM function gives the field distribution in the 1D
PBG structure at the frequency of the peak. We have a
demonstrated that the density of quasinormal modes ca
given for a PBG structure.

The importance of the representation of the field in ter
of QNMs lies in the fact that the properties of the fields in
fully open cavity are described; in particular, it is possible
recover the properties that are crucial for any other pertur
tive expansion of the field, as it is necessary to conside
treat nonlinear optical and quantum processes, as will
discussed in a forthcoming paper.
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APPENDIX A

In order to clarify our WKB-like approximation, we con
sider the functiong1(x,v) @analogous considerations cou
be repeated for the functiong2(x,v)]. We want to solve the
following differential equation:

S ]xx1
n2~x!v2

c2 Dg1~x,v!50 ~A1!

under the limit condition ofg1(x,v)5ein0(v/c)x when x
→`.

We putg1(x,v)5ei (v/c)j(x), then we obtain a similar dif-
ferential equation forj(x) function. Performing the double
derivative ofg1(x,v), we have

]xxg15]xS i
v

c

dj

dx
g1D5S i

v

c

dj

dxD
2

g11 i
v

c

d2j

dx2 g1

52
n2~x!v2

c2 g1 , ~A2!

i.e.,

v2

c2 S dj

dxD
2

2
n2~x!v2

c2 5 i
v

c

d2j

dx2 ~A3!

and

S dj

dxD
2

2n2~x!5
i

2p
l

d2j

dx2 . ~A4!

We are interested in solving the differential equation forg1

in the limit of high values ofv, in order to prove the validity
of Eq. ~2.15!. The WKB method, proposed to solve th
Schrödinger equation~applied to the\ parameter, consider
ing \→0), here is applied in optics and forl parameter
~consideringl→0)~see Ref.@9#!. So, our WKB-like method
starts from the hypothesis of expanding the derivative
j(x) in powers ofl:

dj

dx
5w0~x!1lw1~x!1l2w2~x!1¯5(

n
lnwn~x!.

~A5!

Putting this expansion in the differential equation forj(x),
we have

S (
n

lnwn~x! D 2

2n2~x!5
i

2p (
n

ln11
dwn~x!

dx
.

~A6!

The first two orders forl give the following recurrence re
lations:

w0
2~x!5n2~x!,
02661
or

f

2w0~x!w1~x!5
i

2p

d

dx
w0~x!,

w1
2~x!12w1~x!w0~x!5

i

2p

d

dx
w1~x!, ~A7!

and so on. From the first one, we have

w0~x!56n~x! ~A8!

and from the second one,

w1~x!5
i

4p

1

w0~x!

d

dx
w0~x!. ~A9!

If we stop our expansion to the zero order forl, we obtain

dj~x!5w0~x!dx⇒j~x!56E
x

xj
n~x8!dx8 ~A10!

and the expression ofg1(x,v) becomes

g1~x,v!5expH 6 i
v

c E
x

x1
n~x8!dx8J . ~A11!

This approximation is valid only if higher order can be n
glected. The first-order term~in l! can be neglected if

ulw1~x!u!uw0~x!u, ~A12!

i.e., if it is much smaller than the zero-order term. Expre
sions found forw0(x)ew1(x) give us

Ul i

4p

1

n~x!

]n~x!

]x U!un~x!u, ~A13!

i.e.,

Udn~x!

dx U 1

un2~x!u
!

4p

l
. ~A14!

In general, the refractive indexn value is greater than 1, so
the previous inequality can be fulfilled by the following on

Udn~x!

dx U! 4p

l
, ~A15!

that is, the final condition explaining the WKB-like metho
Equation~2.14! is valid in the limit of uvu→` because in
this case we havel→0. Equation~2.15! is also well defined
for uvu→`. With application of the WKB approximation we
can obtain the exact solutions of the differential equation
g, for high values of frequencies, and we can use these r
tions in order to prove Eq.~2.14!, i.e., the completeness o
the QNM in open cavities@9#.

APPENDIX B

In this appendix, we describe how to obtain the equat
of QNM frequencies, Eqs.~3.3! and ~3.4!, for a symmetric
1D PBG with N periods, where a period consists of tw
4-9
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layers with refractive indicesnh andnl . Then, we solve this
equation for a quarter-wave 1D PBG.

We use the matrix method@17# for describing the 1D-
PBG structures. The transmission matrix for a single per
of the 1D PBG has the form

M5S m11 m12

m21 m22
D , ~B1!

where

m115cosdh cosd l2
qh

ql
sindh sind l ,

m125
1

qh
sindh cosd l1

1

ql
sind l cosdh ,

m2152qh sindh cosd l2ql sind l cosdh ,

m225cosdh cosd l2
ql

qh
sindh sind l . ~B2!

In expression~B2!, the propagation constants in the two la
ers of a periodqh5nh(v/c), ql5nl(v/c), and the respec
tive phasesdh5qhh, d l5ql l appear.

The transmission matrix of a symmetric 1D PBG has
form

MPBG5S m11 m12

m21 m22
D , ~B3!

where

m115cosdh@m11UN21~q!2UN22~q!#
sindh

qh

1m21UN21~q!,

m125cosdhm12UN21~q!1
sindh

qh
@m22UN21~q!

2UN22~q!#,

m2152qh sindh@m11UN21~q!2UN22~q!#

1cosdhm21UN21~q!,

m2252qh sindhm12UN21~q!1cosdh@m22UN21

2UN22~q!#. ~B4!

In expression~B4!, the Chebyshev polynomialsUN(q)
5sin@(N11)q#/sinq with argument cosq5(m111m22)/2 ap-
pear.

As depicted in Fig. 2, iff (x) is the wave function for a
generic QNM andg(x)5 f 8(x) is its spatial derivative, then
( f 0 ,g0) and (f 2N11 ,g2N11) are their values at the input an
output of a 1D PBG, being
02661
d

e

S f 2N11

g2N11
D5MPBGS f 0

g0
D . ~B5!

Referring to Fig. 1~b!, if we solve in every layer the equatio
@]x

21r(x)v2# f (x)50, we obtain the expression for th
wave function of a generic QNM in a symmetric 1D PBG

f ~x!5~A0ei ~v/c!x1B0e2 i ~v/c!x!q~2x!

1(
j 50

N

~A2 j 11ei ~v/c!nhx1B2 j 11e2 i ~v/c!nhx!

3q@x2 j ~h1 l !#q@ j ~h1 l !#1 (
j 50

N21

~A2 j 12ei ~v/c!nlx

1B2 j 12e2 i ~v/c!nlx!q@x2 j ~h1 l !2h#

3q@~ j 11!~h1 l !2x#1~A2N12ei ~v/c!x

1B2N12e2 i ~v/c!x!q@x2N~h1 l !2h#, ~B6!

whereq(x) is the unitary step function.
If we impose the conditions for QNM resonances,f (x)

5exp(6ivx/c) to x→6`, we obtainA0(v)50 and

B2N12~v!5
i ~v/c! f 2N11~v!2g2N11~v!

2i ~v/c!
ei ~v/c!@N~h1 l !1h#

50. ~B7!

We can obtain Eqs.~3.3! and ~3.4! after some algebra from
Eq. ~B7!, if we insert Eqs.~B5!, ~B4!, and~B2!.

Now, if we work with a quarter-wave 1D PBG, we hav

nl l 5nhh5
l ref

4
, ~B8!

where l ref is a reference wavelength. With these assum
tions, the phasesdh , d l become

d l5dh5d, ~B9!

where we have introduced the phased5(l ref/4)(v/c).
Equation~3.3! becomes a real coefficient polynomial equ
tion ~instead of a transcendental equation! of degree 2N11
in the variableeid. There are 2N11 families of QNMs and,
if we pick a generic one, all the QNM frequencies have t
same imaginary part and are distributed with a stepD
52v ref , wherev ref52pc/l ref . Then, there are exactly 2N
11 QNM frequencies in the@0,2v ref# range.

From Eq. ~B6!, we can construct the QNM function
f n(x) for QNM frequenciesv5vn . We note that if we im-
pose the conditions of continuity for the wave functionf (x)
and its spatial derivativeg(x)5 f 8(x) at interfaces of 1D
PBG, we obtain
4-10
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e2 inh~v/c!x0
1

nh
e2 inh~v/c!x0 S einh~v/c!x0 e2 inh~v/c!x0

inh~v/c!x0 2 inh~v/c!x0
D S A0

B D ,
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1 2 S
einh~v/c!x0

21

nh
einh~v/c!x0

D n0e 2n0e 0

S A2 j

B2 j
D5

1

2 S e2 inh~v/c!@x01~ j 21!~h11!1h#
1

nl
e2 inh~v/c!@x01~ j 21!~h1 l !1h#

einl ~v/c!@x01~ j 21!~h1 l !1h#
21

nl
einl ~v/c!@x01~ j 21!~h1 l !1h#

D
3S einh~v/c!@x01~ j 21!~h1 l !1h# e2 inh~v/c!@x01~ j 21!~h1 l !1h#

nheinh~v/c!@x01~ j 21!~h1 l !1h# 2nhe2 inh~v/c!@x01~ j 21!~h1 l !1h#D S A2 j 21

B2 j 21
D ,

S A2 j 11

B2 j 11
D5

1

2 S e2 inh~v/c!@x01 j ~h1 l !# 1

nh
e2 inh~v/c!@x01 j ~h1 l !#

einh~v/c!@x01 j ~h1 l !# 21

nh
einh~v/c!@x01 j ~h1 l !#

D S einl ~v/c!@x01 j ~h1 l !# e2 inl ~v/c!@x01 j ~h1 l !#

nle
inl ~v/c!@x01 j ~h1 l !# 2n1e2 inl ~v/c!@x01 j ~h1 l !#D S A2 j

B2 j
D ,

S A2N12

B2N12
D5

1

2 S e2 inh~v/c!@x01N~h1 l !1h#
1

n0
e2 inh~v/c!@x01N~h1 l !1h#

einh~v/c!@x01N~h1 l !1h#
21

n0
einh~v/c!@x01N~h1 l !1h#

D
3S einh~v/c!@x01N~h1 l !1h# e2 inh~v/c!@x01N~h1 l !1h#

nheinh~v/c!@x01N~h1 l !1h# 2nhe2 inh~v/c!@x01N~h1 l !1h#D S A2N11

B2N11
D , ~B10!

whereA0(vn)50 andB2N11(vn)50.
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