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Quasinormal-mode description of waves in one-dimensional photonic crystals
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Quasinormal-mode treatment is extended to the description of scalar field behavior in one-dimensional
photonic crystals. A one-dimensional photonic crystal is a particular configuration of an open cavity, where
discontinuities of the refractive index give rise to field confinement. This paper presents, for a one-dimensional
photonic crystal, a discussion about the completeness of the quasinormal-mode representation and, moreover,
a discussion on the complex eigenfrequencies, as well as the corresponding field distribution. The concept of
density of modes is also discussed in terms of quasinormal modes.
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[. INTRODUCTION tures are the existence of allowed and forbidden frequency
bands and gaps, in analogy with energy bands and gaps in
The definition of natural modes of confined structures issemiconductors. Dispersive properties are usually evaluated
one of the central problems in physi¢$,2], such as in assuming an infinite periodic structuf&2]. The finite di-
nuclear physics, astrophysics, etc. The main problem is dugensions of PCs conceptually modify the calculation and the
to the boundary conditions, when they are such to push outature of the dispersive properties: this is mainly due to the
the problem from the class of Sturm-Liouville problems. €Xistence of an energy flow into and out of the crystal. A
This occurs when boundary conditions imply the presence ophenomenological approach to the dispersive properties of
eigenvalues, as for example when a scatterer excited froth® PBG has been presented in Réf3]. Application of the
the outsidg 3] gives rise to a transmitted and reflected field. €ffective-medium approach to a 1D PBG is discussed, and
An open cavity with external or internal excitation repre- the analogy of a 1D PBG to a simple Fabry-Perot structure is
sents a “noncanonical” problem, in the sense of a Sturm-developed by Sipe, Poladian, and Martijn de Sterke in Ref.
Liouville problem, due to the fact that the cavity modes[14].
couple themselves with the external modes. This problem is Finite length photonic band gap structures manifest all the
crucial when we intend to study light matter interaction ef-aspects related to a class of problems which do not belong to
fects, such as absorption’ SpOﬂtaneOUS emission, and St|rntuhe Sturm-Liouville class: in faCt, they behave as scatterer

lated emission, as they occur in microcavities. objects when they are excited from outside and as open cavi-
The problem of the field description inside an open cavityties when excited from the inside.
has been discussed by several authdrs6]. In particular, In this work, we extend the QNM theory to 1D PBG as

Leung et al. introduced description of the electromagnetic Cavities open from both sides. The validity of the method is
field in a one sided open optical cavity in terms of “quasi- Proved by reconstructing the field behavior inside the 1D
normal modes” or QNMg§7—10]. Because of the “leakage,” PBG and by recovering the behavior of the density of modes.
or coupling between cavity modes and the continuum, the The paper is organized as follows. In Sec. I, we discuss
modes of the cavity are referred to as quasinormal modes arthe completeness of the QNM representation for 1D-PBG
are characterized by complex frequencies. In REgfs.10, structures. In Sec. lll, we discuss QNM frequencies and
QNMs are discussed in a one-dimensional leaky cavity, protunct!ons. Finally, in Sec. IV we discuss the problem of the
vided the cavity is defined by a discontinuity in the refractivedensity of QNMs.
index which must approach its constant asymptotic value
sufficiently rapidly. Il. COMPLETENESS OF QNM REPRESENTATION FOR

In what follows, we extend the QNM treatment to one- 1D-PBG STRUCTURES
dimensional photonic band gap structures. The past two de-
cades have witnessed an intense investigation on electromag- Now, as depicted in Fig.(&), let us consider a 1D PBG as
netic propagation phenomena at optical frequencies i@ cavity open at both ends, with refractive index that is con-
periodic structures, usually referred to as one-dimensiondinuous in some intervals
(1D) photonic band gaflD-PBGQ structures or 1D photonic

crystals(1D PQ [11]. The essential properties of these struc- No(x) for x<xq,

n(x)=4 Nj(x) for x;_;<x<x;, where je[1N]
*FAX: +39 06 442 40 183; email address: concita.sibilia@ Nyt 1(X) for  x>xy
uniromal.it (2.1
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FIG. 1. (8 Typical behavior of the refractive
indexn(x) in a 1D PBG. Index1(x) is generally
continuous with N discontinuities and it is
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According to the method proposed in Ref8—10], we use
the Green function formalisrhl5]. The Fourier transform
G(x,y; w) of the Green function satisfies the following equa- The QNMs correspond to all the poles of function
tion: G(x,y;w); they represent couples of values, ,f,(X)]; ifa
complex frequency is chosen so as to correspond to a QNM
frequencyw = w,, it follows that[9]

P Gxy;0)==3(x-y) (2.3

2
[5_ +w?p(X)
with W(w,)=0, (2.10

n(x)\?
p(X)=(%) . (2.4  the auxiliary functionsg-.(x,w,) are not linearly indepen-
dent

G(x,y;w) is analytic when Img)>0 and its behavior is of
the type expfinywx/c) for x— *oo. Two auxiliary functions

g-(x,) are introduced, and solution of the homogeneous fa(X) =0+ (X, 0p) = C(wy)g-(X,wp), (211
equation
52 where c(w,) is an appropriate constant of proportionality,
W-l—wzp(x) g+ (X,0)=0, (2.5 and satisfy the asymptotic conditions

with the asymptotic conditions
fa(X)=exp £ingw,x/c) for x—xow.  (2.12

9. (X,w)=eMol«/OX  for x— + oo, (2.6)

el The QNM treatment presents formal analogies with the treat-
g-(x,w)=e " "Mo@/OX for x— —o0, (2.7 ment of Hermitian syster(@]. The most conspicuous simi-

) ] larity is the form of the solutions of wave equation, given as
The Wronskian associated to the two homogeneous equg (x t)=f, (x)e '“n'. Frequenciesw, become complex

tions forg..(x, ) is x independent9] with Im(w,)<0, and it is evident that the mod&s,(x,t) are
not stationary.
W(w)=g,(X,0)g" (X,0)—g_(X,0)g} (X,0). (2.8 It is possible to extend the concept of nof®| for a
cavity open at both ends, of length from x=0 to x=L,
It can be shown that ie.,
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L . . w X
<fn|fn>:2wnf0 p(X)FA0)dx-+ipl F3(0) +F2(L)]. g+<x,w)=cj(w)ex+gj n(£)dé|+Dj(w)
Xi—
(2.13 o
X
Xex;:{—i—J (A&, Xj_1<X<X;
Several remarks about this generalized norm are in order: it Xj-1
involves f2(x) rather thar|f,(x)|? and it is in general com-
plex; it involves two “surface terms”i\pof2(0) and W (X
iVpofa(L). g+(x,w)=ex+gf ngdg|, x>xy, (2.17
XN

The representation of quasinormal modes is complete
only inside the cavity{9]. We prove in what follows that, wherej e [ON] andx_;=—

inside a 1D-PBG structure, the condition for QNM complete- jjer the conditions of continuity for the auxiliary func-

ness is valid, i.e., the behavior Gf(x,y; ) for large|w| is  tionsg. (x,) and their derivatives ix=x; , we obtain

(see Ref[9])

Aje i+ R;Bje
RiA;e'"i+B;e' i

, (2.18

5
lim G(x,y;0)=0, V o/Im(w)<0. (2.14 Bjt1) ™

|w|—o0

Cil_a Ci+le'ﬂj‘l_RjDi+lelﬂj_l)
(Di>_sj( —RiCj,.€"-1+Dj, €1 ) 219
The proof of QNM completeness is based on the application

of the WKB method extended to optical regime. The WKB where

method, proposed to solve the Satirger equatiorfapplied

to 2 parameter, considerinfgj—0), here is applied in optics ® (%1

and for thex parametefconsidering\— 0, see Appendix A 9, =—J’ n(x)dx,

[9]. We note that for a 1D PBG with refractive indéX.1), C Jx

depicted in Fig. 1, we cannot solve exactly E2.5) with the

asymptotic condition§2.6) and(2.7); however, we can use a [n(X) —Nn(x)]
WKB-like method[7] in every period of the 1D PBG, if we j:%,
suppose thak is so small to verify [n(x;")+n(x; )]
" _
dno| a7 | UGG
dx <T for xj_;<x<x;, where je[1N], 2n(x]- )
(2.15

[n(x;")+n(x;)]
O v L (2.20
! 2n(x;)
where\ is the wavelength of the electromagnetic field.

For a 1D-PBG structure, whose refractive index is givenNow, only inside the 1D PBG, i.e¥ (X,Y)|Xo<y=x<Xy,

by Eq (21), we obtain the foIIowing expressions for the we can assure thajlxo<yng , Xj—1$X<XNr so we have

auxiliary functiong_ (X, w): for j<=m=N and 1=n<j,
X; LW [*n
g(x,w)zAj(w)exp[i%L’n(g)dg +Bj(w) 9(y,w)=An(w)exl{lgfy n(§)dé|+Bn(w)
o (% X ex —iﬁfx”n(g)dg (2.21)
X ex _IEJ; n(HAE|, X 1<X<X; cly .

+Dm(w)

g+<x,w>=cm<w>ex+% f:mln(adg

. w X
xex;{ —i < Lmln(f)dg

wherej e[1N+1] andxy, 1= +o. For the auxiliary func- Then, the Fourier transform of the Green function y&¥ x
tion g, (X,w), we have has the following expression:

g(x,w)zexp{ —i %fxon(g)dg

X

, X<Xp, (2.1
. (2.22
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G(xy;0)=—

+ Bn(w)exr{ oy %f;”n(g)dg}
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[Cm(w)eX;{i 2 fn (o) +Dm<w>exp[ ~i %fﬁm,lnmdgﬂ

2i %n(x)

CoefficientsA,, B,, C,,, andD,, are obtained from Egs.
(2.18 and(2.19 after some algebra

n—-2

n—-1 n—-1 Rnex iZO 1(}j_ﬁnl)

A, _ A, “T s I=

B/ -0 | B; —1lL 5 n—1

exp(iz 1‘}])
i=o

(2.29
ol 1L [5)
(Dm _jlz—lm Dj
N—-1
N RNRmexp(i_E ﬁj—ﬁml)
! J=m
E]]_;[m SJ N—1
—Ryexp i 2 ﬁj)
j=m-1
(2.29

We suppose for the refractive index th|at(xj+)—n(xj_)|
<An<1, V je[1N] so R;=An/[n(x)+n(x;)]
<1[n(x")+n(x;)]1<1/2,V je[1N]. We note thaR;, V
j €[1N], is close to 0 than to 1; then, from Ed&.24) and
(2.25, it follows thatB,, is dominant with respect té,, and
D, is dominant with respect t€,,, so Eq.(2.23 becomes

ex% —i% Jyxn n(é)dé+ J):nl ”(§)d§D
2i %n(x)ex;{—i%fx’?—

Since fory<x we have

J:Wm@d§+Jj

m—

é(X,y,w)E -
n(§)d§}
' 2.26

de= | " n(ode+ [ n(od
(e J%]Jua ¢ J;M§)§

sfxn n(¢)dé (2.27)
Xp-1

and the transformed Green function in a 1D-PBG structure

has the following behavior:

G(x,y,w)—0 for |w]—00. (2.28

Therefore, the QNM completeness in 1D PBG is proved.

X,

Dm(w>Bn<w>ex;{ -z ﬂn(f)dg} —cm(w)An<w>ex+ =T

n(é)de (2._23

m-1

IIl. QNM FREQUENCIES AND FUNCTIONS FOR PBG
STRUCTURES

Let us now specify the previous considerations to a sym-
metric 1D PBG withN periods, where a period consists of
two layers with refractive indices, andn,, as usually con-
sidered in the literature. We divide the entixespace into
2N+ 3 layers, in each of which the index of refractinfix)
is constant; for a generic intervalxj(_1,X;), with ]
=0,1,.... N+1, 2N+2, andx_;=—0o andXy\,1=%, the
index of refraction is chosen to take the constant values

1 for j=0, 2N+2
nj=y N for j=13,.AN-1, 2N+1 (3.1
n for j=24,.,N,

as schematically depicted in Fig(hl.
In Appendix B, we demonstrate that if we introduce the
two phase terms

w
6|=q||=n||3,

w
Sh=dnh=nph—, (3.2

the QNM frequencies can be found by solving the following
transcendental equation:

[(N=1)/2] - )
(-1) (N-1-p0
S TR (e THTAC A
[(N=2)/2] » )
(-1 (N=2-)1
R TR (Y e THTAE A
(3.3

where the coefficients, 8, andy are parameters related to
the refractive indices of each layer
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More details are given in Appendix B. Only for a symmetric
1D PBG with quarter-wave stacks, E@.3) can be solved
analytically; if N is the number of periods and, is the
reference frequency, there are exacty21 QNM frequen-
cies in the[0,2w ] range.

The QNMs distribution is not uniform in space, but pre-
sents gap structures. In Fig(a2 we plot QNM frequencies
for a symmetric quarter-wave 1D PBG, where the reference
wavelength is\ =1 um, the number of periods isl=4,
and the two used refractive indices arg=1.5, n;=1. A
simple inspection of Fig. (@) shows that next to the gap, the
QNM frequencies have the smallest imaginary part, and
hence have the narrowest resonance lines. In Fim), QNM
frequencies are shown for the same structure of K, But
with n,=2, n;=1. Contrasting Figs.(2) and 2b), it can be
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FIG. 2. (a) QNM frequencies for a symmetric quarter-wave 1D
PBG with reference wavelength.=1 um, number of period&
=4, and refractive indices,=1.5,n; = 1. (b) QNM frequencies for

seen that as the difference between the refractive indices & Symmetric quarter-wave 1D PBG with reference wavelengih
adjacent layers is increased, the width of the gap increases.1#m, number of periodN=4, and refractive indices,=2,

This also entails that the magnitude of the imaginary part o

pi=1. (c) QNM frequencies for a symmetric quarter-wave 1D PBG

the QNM decreases, and the resonance peaks become tightifh reference wavelengthe=1um, number of period=8,

In Fig. 2(c), QNM frequencies are shown for the same struc-
ture as above, with an increased number of pertdes8 and

and refractive indicesp,=2, n,;=1.

n,=2, n,=1. Contrasting Figs.(®) and Zc), it can be seen 2N. From the QNM theorysee Appendix B in the range
that as the number of periods is increased, the position of the €[ 0,2w,f], there are exactly 8+1 QNM frequencies.
gap remains the same: as in the previous case, the imagina@ne of them is located on the imaginary axis and we reject it
parts of the QNMs decreagén modulus, and resonance because it does not represent a physical field oscillation. The

peaks become narrower.

remaining 2N QNMs correspond to the N transmission

If we study the behavior of the transmission spectrum of gpeaks. Thenth QNM frequencyw, well describes theath
symmetric quarter-wave 1D PBG, we observe that, in théransmission peak in the sense ttiBtRe(w,) corresponds to
base periodw €[ 0,2w,.7], the number of peaks is equal to the resonance frequency of thtéh transmission peak arn@)
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10 —— 7 field intensity distribution inside the same 1D-PBG structure
— ] as above, at the low-wavelength band ed@e3688 um),
o Te® while, in Fig. 3b), we refer to the high-wavelength band

edge(1.1779um). We note that the field intensity distribu-
tion predicted by the QNM theorisee Appendix Ba part
from negligible differences due to purely computational
problems, is very close to that obtained by numerical meth-
ods based on the transmission mafi6—1§.

100/,

IV. DENSITY OF QUASINORMAL MODES

One of the most important parameters describing the
spectral properties of field localization is the so called “den-
sity of modes.” From the literature, the concept of density of
modes for a closed cavity is well known, however the prob-

(a) X [um] lem of a suitable definition arises for open cavities.
We would like to remark that the density of modes is
10 ————————————————— calculated assuming the presence of an excitation at the left
T AWM e | 1 boundary of the 1D PBG.
sl | For 1D-PBG structures, Bendickson, Dowling, and

Scalora[18] introduced a definition of density of modes and
a method of calculation based on the transfer matrix method.
According to Ref[18], the density of modes of a multilayer
structures can be obtained from the phase of the complex
transmission function

t(w)=xX(w)+iy(w)=Te*?, (4.1)

where ¢ is the total phase accumulated as the light propa-
gates through the 1D PBG, seen as a potential well of width
L. Therefore, the effect of propagation can be encapsulated
into a propagation factdeL, wherek is an “effective” wave
(b) X [um] number.

The quantitydk/dw has the meaning of density of modes

FIG. 3. (@) Intensity field distributioni (x) normalized to input  (DOM), and according to Eq4.1) it is given by

intensity |, for the QNM theory(——) and numerical methods
(—— ), in a symmetric quarter-wave 1D PBG with reference dk 1y'x—x'y
wavelength\ =1 um, number of period&N=10, and refractive o(w)= do = L XZTyZ’ (4.2
indices n,=3, n;=2, at the low-wavelength band edge,,
=0.8688um. (b) Intensity field distributionl (x) normalized to
input intensityl,, for the QNM theory(——) and numerical meth-
ods(— — —), in a symmetric quarter-wave 1D PBG with reference
wavelength\ =1 um, number of perioddN=10, and refractive
indices n,=3, n;=2, at the high-wavelength band edgeq4n
=1.1779um.

1)1,

0 0.5 1.0 1.5 2.0

where the prime denotes differentiation with respecivto

Now, let us go back to the QNM formalism for open
cavities and search for a definition and calculation of density
of quasinormal modes, to be compared with results obtained
from Eq. (4.2).

We deal with an open cavity, however through the con-
o ) ) cept of QNM we can “look” inside the cavity and define the
[Im(w)| is linked to the full width at half maximum of the |ocal density of quasinormal modes.(x,®) so that the
nth transmission peak. number of QNMsSNouu(X, @) in the infinitesimal tract of

It is important to point out thatsee Appendix Bthe  cavity (x,x+dx) and for a range of frequencyo(w + dw) is
eigenfunctionsf ,(z) associated to thath QNM, of eigen-

frequencyw,, is such that its square modullfs,(z)|? gives ONoNm(X, @) = Tjo(X, ) dX dw. 4.3
the field intensity distribution inside the PBG structure at
frequency Rep,). For a cavity of length_ and with a suitable refractive index

We consider a symmetriéN periods plus one stagk n(x), the density of quasinormal mod®OM-QNM) is
guarter-wave 1D-PBG structure witN=10, A\ ,=1 um, )
andnp=3, n;=2. The low-wavelength and high-wavelength _ =+ 2
band edges predicted by the QNM thedigq. (3.3)] are o(w)= L fo () Tioc(X, @) dx. “.9
respectively 0.868&m and 1.1779um, those obtained by
the numerical transfer matrix methofis6—18 are respec- If we extend the method of Het al. [19] to a cavity open
tively 0.8677um and 1.1781um. In Fig. 3a), we plot the  from both sides with a pump incoming from the left, we
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E 2 [Im @

7 2ok [0— (Rewm ot KA) P+ 1M wp,’
Fr(0)F (0 (4.11
n(0)Fn(0) F (X)Fn(X).
(4.5) and it is a superposition of functions with QNM frequencies
as parameters.

obtain the local density of quasinormal modes inside the K
structure as a superposition of QNMs o(w)=

Po
O X, 0)=K ?2

rm(w— o) (0+ o)

where we have introduced a normalization constént From above, there areN2+1 QNM frequencies in the
and the normalized QNM functions F,(x) [0,2w,] range, and, in conformity with above-mentioned
=f,(X) V2w, /{f,,fp). notation, we express them asp,,=Re(wn)+ | IM(wp),

For one resonance m=—n, since (,f¥)  with me[0,2N]. Equation(4.11) converges to

=(—w_p,f_,), the local density4.5 becomes
2N

K T
b0 |Fa(0)Fp(x)|? o(w)= =~ >, cotr{j—(w—w:,:o)
O'Ioc,n(xuw)_K? (w—REwn)2+Im2 . (4.6) 2A =0 A
2N
If we integrate Eq(4.6) over the cavity length, we obtain +j ﬁ > cot{g(w—wm ol (4.12
m=0 '
K 1| Fna(0)[?
op(w)=— — 2 2 ) 4.7 . .
7 (w—Rew,) +IM w, For a symmetric quarter-wave 1D PBG with lengthnum-

. o ber of periodaN and reference frequenay,.s, and the num-
where we have introduced the normalization integfials per of QNMs in units oL is 2N+ 1 over the rang€0,2w ]

=1L §Fa(¥)]2p(x)dx. and represents also the QNMs in the whole range
Now, we proceed further and obtain an expression for th‘f—Zwref,Zwref], since the QNM of frequencyw,, o, with
DOM-QNM of a symmetric quarter-wave 1D PBG. Re(wno)>0, is represented also by the frequeney
For narrow resonances, i.¢lm w,|<|Rewy|, we can ne- — —wpo, With Re@_nm)<0 [7]. Then, the normalization

glect aliasing between frequencies, then the QNM-DOM isconstamK,, is obtained by following condition:
the superposition

[Fn(0)[? waref g 2N
= . 4.1
(ow—Rew,)’+Im?w,’ ot@)de L 413

4.9

K
(@)= on(@)=—2 1

— 2wt

) ~_InFig. 4(a), we plot the DOM predicted by the QNM theory
As suggested in Ref19], we can calculate the normalization [Eq. (4.12] and by BendicksofiEq. (4.2)] for a symmetric
integrals| ,= 1/L Vpo/2|Im w[[[Fo(0)*+|Fy(L)P]. If the cav-  quarter-wave 1D PBG, where the reference wavelength is
ity is symmetric, therF (L) =(—1)"F,(0); sotaking into ) =1 um, the number of periods =4 and the two used
account thatF ,(0)|?=L/\pol o Im ey, Eq. (4.8) becomes refractive indices ar@,=1.5, n;=1. In Fig. 4b), the two
, DOM are shown for the same structure of Figa)4 but with
o(w)= K—Z |2 [Im @y (4.9 n,=2,n;=1. In Fig. 4c), the two DOM are shown for the
T "(w—Rew,)’+Im? w,’ same structure as in Fig(a}, with an increased number of
periodsN=8 andn,=2, n;=1. We note the good agreement
whereK'=KL//po. between the DOM predicted by the QNM theory and the
As suggested in Ref19], under the previous hypothesis DOM obtained by Bendickson.
of |Im w,|<|Rew,|, we can approximate the normalization
integrals tol ,=1/L, and the DOM-QNM finally results

V. CONCLUSION

O_(w):&z |Im | (4.10 We have analyzed the behavior of the electromagnetic

™ 4 (0—Rewy)’+Im? w,’ field in the optical domain, inside one-dimensional photonic

crystals, by using an extension of the QNM theory. 1D-PBG

whereK ,=K'/L2. structures are particularly optical cavities, with both sides
Now, we specify, for a symmetric quarter-wave 1D PBG, open to the external environment, with a stratified material
the DOM-QNM (4.10. We consider a symmetric quarter- inside. These PBG structures are finite in space, and when
wave 1D PBG with a number of periods and reference we work with electromagnetic pulses of a spatial extension
frequencyw,. The families of QNMs are®+ 1. If we pick  longer than the length of the cavity, the PBG cannot be stud-
the m™" family, all the QNM frequencies have the sameied as an infinite structure, rather we have to consider the

imaginary part Img,)<<0. For anymth family, the QNM  boundary conditions at the two ends of the structure.

frequenciesw,,  are distributed with a step =2we;, SO The QNM theory, we have extended and applied, consid-
Re(wm =Re(wme) + KA, ke Z (see Appendix B Then, the ers the realistic situation in which the cavity is opérom
DOM-QNM (4.10 becomes both sideg and is enclosed in an infinite external space. The
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FIG. 4. (@) DOM in units of 1b, wherev=cL/Ly (L is the length and. the optical path of the 1D PBGaccording to the QNM
theory (—) and Bendicksori— — —), for a symmetric quarter-wave 1D PBG with reference wavelengif+ 1 um, number of periods
N=4, and refractive indices,=1.5,n;=1. (b) DOM in units of 1b, wherev =cL/L,y (L is the length and. , the optical path of the 1D
PBG), according to the QNM theory—) and Bendicksoi— — —) for a symmetric quarter-wave 1D PBG with reference wavelength
Nrer=1 um, number of perioddl=4, and refractive indices,=2, n;=1. (c) DOM in units of 1b, wherev =cL/Ly (L is the length and
L opt the optical path of the 1D PBGaccording to the QNM theoryy—) and Bendicksoit— — —), for a symmetric quarter-wave 1D PBG
with reference wavelength,e=1 um, number of period® =8, and refractive indices,=2, n;=1.

lack of energy conservation, for the system under considerfcies correspond to theN2transmission peaks in th®,2w ]

operator for the.conser.vative cases, is not Hermitian for qrequency is the resonance frequency of the transmission
double open optical cavity and the modes of the field are nof)eak, and the imaginary part of QNM frequency is a measure

normal but quasinormal. .
. ; . . of the broadening of the same pedk) the square modulus
Starting with the Green function we have discussed thef the QNM function gives the field distribution in the 1D-

completeness of the field representation inside the 1D-PB

structure. We have observed that the QNM frequencies ar BG structure at the freque_ncy of the_ peak. We have also
not uniformly distributed in the complex plane, but they ar- _emonstrated that the density of quasinormal modes can be
range themselves in order to form permitted and forbidder@ven for a PBG structure.

bands, in agreement with the known characteristics of these The importance of the representation of the field in terms
structureg18]. Moreover, we have found that, for a symmet- of QNMs lies in the fact that the properties of the fields in a

ric quarter-wave 1D PBG withN periods andw, as the fully open cavity are described; in particular, it is possible to

reference frequency, there are exacty-21 QNM frequen-  recover the properties that are crucial for any other perturba-
cies in the[0,2w,] range. One of them is located on the tive expansion of the field, as it is necessary to consider to
imaginary axis and we reject it because it does not represetiteat nonlinear optical and quantum processes, as will be
a physical field oscillation, the remainindN2QNM frequen-  discussed in a forthcoming paper.
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i d
2¢0(X)p1(X)= > dx @o(X),

In order to clarify our WKB-like approximation, we con- and so on. From the first one, we have

sider the functiorg, (x,w) [analogous considerations could

be repeated for the functian_(x,w)]. We want to solve the
following differential equation:

n?(x) w?
Ixxt 2

(A1)

)g+(xrw):0

under the limit condition ofg, (x,w)=eM(“/9% when x
— 00,

We putg., (X, w) =e'(“/9¢X  then we obtain a similar dif-
ferential equation fo&(x) function. Performing the double
derivative ofg, (X,w), we have

B wdg ,wd§2 _wd2§
&xxg+_(9 C ng+ c & g++1— c dx29+
n?(x) w?
= CZ g+1 (AZ)
ie.,
w?(dé\? n’(X)w? o d%
?(d—x T cae (3)
and
d¢\? i d%
(dX) —Nn (X)—E)\W. (A4)

We are interested in solving the differential equationdor
in the limit of high values ofw, in order to prove the validity

of Eqg. (2.15. The WKB method, proposed to solve the

Schralinger equatior(applied to the# parameter, consider-
ing #—0), here is applied in optics and for parameter
(consideringh —0)(see Ref[9]). So, our WKB-like method

i d
P10+ 201()eo(X)=5— T e1(x), (A7)
®o(X)=En(X) (A8)
and from the second one,
i 1 d
P1(X)= T po(x) dx 0 @o(X). (A9)

If we stop our expansion to the zero order fgrwe obtain
X
dg(x)z%(x)dx:g(x):if "n(x)dx'  (A10)
X
and the expression a@f, (Xx,w) becomes

g+(x,w)=exp{ *i % f:ln(x')dx’] .

This approximation is valid only if higher order can be ne-
glected. The first-order terrfin \) can be neglected if

(A11)

INe1(X)|<[@o(X)], (A12)

e., if it is much smaller than the zero-order term. Expres-
sions found forpg(X)eeq(X) give us

i1 an(x)
N N0 o <|n(x)|, (A13)
dn(x)] 1 A
dx |[n%(x)] N (ALl4)

In general, the refractive indax valueis greater than 1, so
the previous inequality can be fulfilled by the following one:

starts from the hypothesis of expanding the derivative of

&(x) in powers of\:

= E )\n(Pn(X)
(A5)

dé
ax @o(X) +F N1 (X)+N2pp(X)+- -

Putting this expansion in the differential equation #{x),
we have

2 .
Y Wm) 0= S a2

T n dX

(AB)

The first two orders fol give the following recurrence re-
lations:

P5(X) =n?(x),

dn(x)
dx

<~ (A15)

that is, the final condition explaining the WKB-like method.
Equation(2.14) is valid in the limit of |w|—c because in
this case we have— 0. Equation(2.15 is also well defined

for |w|— . With application of the WKB approximation we
can obtain the exact solutions of the differential equation for
g, for high values of frequencies, and we can use these rela-
tions in order to prove Eq.2.14), i.e., the completeness of
the QNM in open cavitie$9].

APPENDIX B

In this appendix, we describe how to obtain the equation
of QNM frequencies, Eq93.3) and (3.4), for a symmetric
1D PBG with N periods, where a period consists of two
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layers with refractive indicen,, andn,. Then, we solve this
equation for a quarter-wave 1D PBG.
We use the matrix methofll7] for describing the 1D-

PBG structures. The transmission matrix for a single perio

of the 1D PBG has the form

M11 M2
M= , (B1)
M21  M22
where
On . .
M11= COSd}, COSH| — q—sm opSing;,
[
1 . 1 .
M1o=—"SINJ}, C0SS,+ —sin , cossy, ,
Oh qi
Mo1= —(Qp SiN Sy, 0SS, — q Sin 6, COSé, ,
a . .
Moo= COSJ}, COSS|— an sindy, sind, . (B2)
h

In expressior(B2), the propagation constants in the two lay-

ers of a periody,=nn(w/c), q,=n,(w/c), and the respec-
tive phasess,=qnh, §=ql appear.

The transmission matrix of a symmetric 1D PBG has the

form
Mo My Myp 83)
PBG My My’
where
sinéy,
M11=COSSK[ 11Un-—1(F) —Un_2(D)] an
+ poUn-1(9),
Sinéh
My,=COSSpu1Un-—1(F) + a [m2Un-1(D)
—Un—2(D)],
My1=— 0 SiNSp[ w13Un-1(F) —Upn_2(9)]
+cosShunUn-1(9),
My= — 0 SiNSpu1UN-—1( D) +COSSH[ pUn-1
—Upn_2(9)]. (B4)

In expression(B4), the Chebyshev polynomial&)y(9)
=sin(N+21)9]/sin 9 with argument co®y=(uq1+ wo9)/2 ap-
pear.

As depicted in Fig. 2, iff (x) is the wave function for a
generic QNM andy(x) =f'(x) is its spatial derivative, then
(f9,90) and (fon1,92n1 1) are their values at the input and
output of a 1D PBG, being

PHYSICAL REVIEW E 68, 026614 (2003

fo

f
( 2N =MPBG(9 (B5)
0

Jon+1

Cheferring to Fig. 1), if we solve in every layer the equation

[(?)2<+p(X)w2]f(X)=0, we obtain the expression for the

wave function of a generic QNM in a symmetric 1D PBG:

f(X) — (Aoei(wlc)x+ Boefi(w/C)X) 'ﬂ( _ X)

N
T (Agys 1€ @M B, e i(wlemx)
=0
N-1
X I[x—j(h+D)]9[j(h+1)]+ jgo (Ag 1 g€/ @lOX
+sz+2e_i(w/C)nlx)ﬂ[X_j(h+|)—h]
X O[(j+1)(h+1)—=X]+ (A 2€' (/%

+Bonse @) 9[x—N(h+1)—h], (B6)

whered(x) is the unitary step function.

If we impose the conditions for QNM resonancééx)
=exp(*iwxX/c) to x— *o, we obtainAg(w)=0 and

i(w/c)f2N+-jl_(w)_92N+l(w) ei(w/C)[N(h+|)+h]
2i(wlc)

Bonio(w)=

=0. (B7)
We can obtain Eq93.3) and (3.4) after some algebra from
Eq. (B7), if we insert Eqs(B5), (B4), and(B2).

Now, if we work with a quarter-wave 1D PBG, we have

7 (B8)

Aref
n|| —nhh— 4

where \ ¢ IS a reference wavelength. With these assump-
tions, the phases,,, 6§, become

5| = 5h: 5, (Bg)
where we have introduced the phage=(\f4)(w/c).
Equation(3.3) becomes a real coefficient polynomial equa-
tion (instead of a transcendental equajiof degree A+ 1

in the variablee'?. There are R+ 1 families of QNMs and,

if we pick a generic one, all the QNM frequencies have the
same imaginary part and are distributed with a step
=2w.ef, Wherewo=2mC/\ . Then, there are exactlyN?
+1 QNM frequencies in th€0,2w,.] range.

From Eg. (B6), we can construct the QNM functions
fn(x) for QNM frequencieso= w,. We note that if we im-
pose the conditions of continuity for the wave functif(tx)
and its spatial derivativg(x)="f'(x) at interfaces of 1D
PBG, we obtain

026614-10
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efinh(w/c)xo ie—inh(w/c)xo
(Al) 1 Nh
Bl 2 __1einh(w/c)x0
Np

einh(w/c)xo

@~ inh(w/e)[Xg+(j—1)(h+1)+h]

eini(@/e)[xg+(j=1)(h+1)+h]

( einh(w/c)[xo+(j —1)(h+1)+h]

nheinh(w/c)[x0+(j —1)(h+1)+h]

e inp(wlo)xo+j(h+D)]
(A2j+1) _ Nh
Boj1

N| -

__1einh(w/c)[x0+j(h+l)]
Ny

einh(wlc)[xo+j(h+l)]

e—inh(w/c)[x0+ N(h+1)+h]

=

1
Boni2) 2

eINh(@/©)[xg+N(h+1)+h]

( einh(w/c)[x0+ N(h+1)+h]

Ny @/eDo+ N(h+1-+h]

whereAy(w,) =0 andB,yn; 1(w,)=0.

ie—inh(w/c)[xoﬂ(hﬂ)]

PHYSICAL REVIEW B8, 026614 (2003

einh(w/c)xo

efinh(wlc)xo )(AO)

noeinh(w/c)xo _noefinh(w/c)xo BO

EEe—meme+U—iKh+D+M
n,

__1ein|(w/c)[xo+(j —1)(h+1)+h]

n
e iNn(@/©)[Xo+ (= 1)(h+1)+h] A1
—npe M@oxot (- Dh+h+h] [ By |

ein(@/O)xg+j(h+D)]

in(w/c)[xg+j(h+1)]

e ini(w/0)[xg+j(h+1)] )(Az)
i

ne —nye M@+ || By,

ie—inh(w/c)[xow(hﬂ)m]
No

-1 .

— @inn(@/o)xg+N(h+1)+h]
No

—inp(w/c)[xg+N(h+1)+h]
e n 0 Aon+1
—inp(/c)[xg+N(h+1)+h] '

(B10)

—-nye Ban+1
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